Smooth Approximation of Plurisubharmonic Functions on Almost Complex Manifolds

نویسندگان

  • F. REESE HARVEY
  • H. BLAINE LAWSON
چکیده

This note establishes smooth approximation from above for Jplurisubharmonic functions on an almost complex manifold (X, J). The following theorem is proved. Suppose X is J-pseudoconvex, i.e., X admits a smooth strictly J-plurisubharmonic exhaustion function. Let u be an (upper semi-continuous) J-plurisubharmonic function on X. Then there exists a sequence uj ∈ C∞(X) of smooth strictly Jplurisubharmonic functions point-wise decreasing down to u. In any almost complex manifold (X, J) each point has a fundamental neighborhood system of J-pseudoconvex domains, and so the theorem above establishes local smooth approximation on X. This result was proved in complex dimension 2 by the third author, who also showed that the result would hold in general dimensions if a parallel result for continuous approximation were known. This paper establishes the required step by solving the obstacle problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Aspects of Analysis on Almost Complex Manifolds with Boundary

We present some results dealing with the local geometry of almost complex manifolds. We establish mainly the complete hyperbolicity of strictly pseudoconvex domains, the extension of plurisubharmonic functions through generic submanifolds and the elliptic regularity of some diffeomorphisms in almost complex manifolds with boundary.

متن کامل

Plurisubharmonic Functions and the Structure of Complete Kähler Manifolds with Nonnegative Curvature

In this paper, we study global properties of continuous plurisubharmonic functions on complete noncompact Kähler manifolds with nonnegative bisectional curvature and their applications to the structure of such manifolds. We prove that continuous plurisubharmonic functions with reasonable growth rate on such manifolds can be approximated by smooth plurisubharmonic functions through the heat flow...

متن کامل

Potential Theory on Almost Complex Manifolds

Pseudo-holomorphic curves on almost complex manifolds have been much more intensely studied than their “dual” objects, the plurisubharmonic functions. These functions are standardly defined by requiring that the restriction to each pseudo-holomorphic curve be subharmonic. In this paper subharmonic functions are defined by applying the viscosity approach to a version of the complex hessian which...

متن کامل

Some Remarks on Approximation of Plurisubharmonic Functions

Let Ω be a domain in Cn. An upper semicontinuous function u : Ω → [−∞,∞) is said to be plurisubharmonic if the restriction of u to each complex line is subharmonic (we allow the function identically −∞ to be plurisubharmonic). We say that u is strictly plurisubharmonic if for every z0 ∈ Ω there is a neigbourhood U of z0 and λ > 0 such that u(z) − λ|z|2 is plurisubharmonic on U . We write PSH(Ω)...

متن کامل

Plurisubharmonic Exhaustion Functions and Almost Complex Stein Structures

We prove that a relatively compact pseudoconvex domain with smooth boundary in an almost complex manifold admits a bounded strictly plurisubharmonic exhaustion function. We use this result in order to study convexity and hyperbolicity properties of these domains and the contact geometry of their boundaries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014